My website is currently under construction and will be updated soon.
Parasitic Signals
Parasitic Signals is a series of works exploring interspecies relationships, with a particular focus on parasitism and mutualism. These works provide immersive experiences that challenge traditional perceptions and foster new understandings of coexistence between humans and other biological entities. In an innovative collaboration with biophysicists at Johannes Kepler University in Linz, Austria, artist Sabina Hyoju Ahn employs Atomic Force Microscopy (AFM) to measure the interactions (forces) between humans and pathogens (Borrelia bacteria and the SARS-CoV-2 virus) at a molecular level. She then transforms this numerical data into immersive audio-visual experiences.
The first iteration
Parasitic Signals (2019~2021)
This work is a quadraphonic sound installation that uses novel sonification methodology to transform the binding energy between a single molecule of Borrelia bacteria and human protein cell into auditory perception. Borrelia bacteria are known as pathogens that can cause Lyme disease in humans. In this work, the pathogen-human molecular level of physical interaction was measured by Atomic Force Microscopy technology which practically can touch a single molecule to measure the binding force between these two different biomolecules. By looking at the interspecies relationship in parasitism, this work tries to see it as a mutualistic and long-term relationship rather than the negative effect on the host’s side.
This work has been developed by collaborating with Biophysics Institute at Johannes Kepler University in Linz, Austria, and Twelve Lab in The Hague, Netherlands. This work has been supported by Akademie Schloss Solitude, Stuttgart, Germain and Braunschweig Project, HBK, Braunschweig, Germany.
Interaction between Borrelia bacteria and Human Extracellular molecule (AFM Data ) Sonification
The Second iteration
Parasitic Signals: Coexistence with the SARS-CoV-2 Virus
(2021-2022)
This project aims to transform the nano-scale of a striking biological phenomenon, the relationship between SARS-CoV-2 virus and human molecules, into an interactive audiovisual simulation. In this work, the interaction between the spike protein of SARS-CoV-2 and human cellular proteins is measured by Atomic Force Microscopy, which can touch and image a single molecule. We are creating an interactive audiovisual installation and performance from a set of interaction data. The audience is invited to an immersive space where they can control the biomolecules’ behavior so that they can intuitively recognize the biological characteristics. This project is not only a demonstration of scientific data but also attempts to look at the interspecies relationship in parasitism which particularly deals with our current and post-pandemic life with coronavirus and how we might control our coexistence in a virtual space.
“Parasitic Signals: Coexistence with the SARS-CoV-2"은 기생에 대한 연구로 시작하여 사회문화적 관점에서 인간과 병원체 간의 관계에 초점을 맞춘 작업이다. 팬데믹이 발생한 지난 2020년 오스트리아 린츠에 위치한 요하네스 케플러 대학교 생물물리학자들이 원자현미경(AFM)을 사용하여 코로나 바이러스의 스파이크와 인간 단백질의 사이의 상호 작용을 촬영한 세계 최초의 영상을 발표했다. 스파이크 단백질이 깨지기 쉬운 구조임에도 불구하고 생리적 조건에서 스파이크 단백질의 움직임과 역학이 기록되었고, 바이러스의 스파이크 단백질과 세포막에 발현된 ACE2 수용체 사이의 상호작용력을 AFM을 사용하여 측정하는 데 성공했다. 2022년, 이 프로젝트는 과학자, 예술가, 엔지니어 간의 다학제적 협업을 통해 관객과 퍼포머를 포함 참가자가 코로나 바이러스의 생체 분자의 행동을 제어하여 생물학적 특성을 직관적으로 인식할 수 있는 몰입형 공간에서 인터랙티브 시청각 시뮬레이션으로 개발되었다. “Parasitic Signals: Coexistence with the SARS-CoV-2"은 시각화 및 음향화를 통해 정밀한 과학적 데이터를 이해하고 전달하는 데 시뮬레이션을 사용하는 방법을 보여줄 뿐만 아니라 기생관계의 종간 관계를 상호주의적이고 장기적인 관계로 살펴보고자 한다. 이 프로젝트는 도나 해러웨이, 리처드 도킨스, 린 마굴리스와 같은 학자들의 연구를 바탕으로 인간과 비인간 유기체 사이의 복잡하고 진화하는 관계를 탐구하며, 질병이 인류에게 미치는 역사적, 현대적 영향, 코로나19를 포함한 팬데믹의 사회적, 정치적 측면을 조사하고 가상 현실을 사용하여 병원균과의 공존을 더 잘 이해하고 통제할 수 있는 방법을 탐구하고자 한다.
Expose of this work, see here.
Preliminary research paper Multi-sensory transformation of biological signals, Doctoral Symposium at CoAx 2019.
Project by
Sabina Hyoju Ahn (Artist, Performer, Producer)
Myungin Lee (Technical Director, Performer)
Yoojin Oh (Scientist, Project Leader)
Special thanks to Prof. Dr. Peter Hinterdorfer.
This work is supported by
Johannes Kepler University (LIT-ARS-2022-005.), Ars Electronica Festival 2022, Land Oberösterreich(Upper Austria Goverment) and ARKO (Arts council korea).
We appreciate data from H.Seferovic, R.Zhu, L.Hain (Institute of Biophysics, JKU), G.Kada(10-9), C.Rankl(RECENDT), and advice from J.Kuchera-Morin, A.Cabrera (UCSB), H.S.Lee(KR).
This work was published in the proceedings of the IEEE VISAP 2022 conference Multi-sensory transformation of biological signals.